
Product Features

- 50 1000 MHz
- +40 dBm OIP3
- -71dBc CTB
- -48dBc CSO
- 3.5 dB Noise Figure
- 14.5 dB Gain
- +20 dBm P1dB
- Lead-free/Green/RoHS-compliant SOT-89 Package
- Single +5 V Supply
- MTTF > 100 years

Product Description

The AH2 is a general purpose, high dynamic range amplifier targeting cable TV markets. The combination of gain flatness, high linearity and bandwidth make it ideal for CATV distribution, cable modem and laser diode driver applications. The AH2 is designed for 75 ohm systems and can operate directly from a +5 Volt DC regulator. The device is manufactured using reliable GaAs MESFET technology and boasts an MTBF of >100 years at a mounting temperature of +85°C. It is available in the environmentally-friendly lead-free/green/RoHS-compliant SOT-89 package. All devices are 100% RF and DC tested.

Functional Diagram

Function	Pin No.
Input	1
Output/Bias	3
Ground	2, 4

Applications

CATV / DBS

Specifications (1)

Parameter	Units	Min	Тур	Max
Operational Bandwidth	MHz	50		1000
Test Frequency	MHz		800	
Gain	dB	13	14.5	
Input Return Loss	dB		14	
Output Return Loss	dB		17	
Output P1dB	dBm		+21	
Output IP3 (2)	dBm	+37	+40	
Noise Figure	dB		3.5	
Operating Current Range	mA	120	150	180
Supply Voltage	V		5	

- 1. Test conditions unless otherwise noted: $T = 25^{\circ}$ C, 50Ω system.
- 2. 3OIP measured with two tones at an output power of +5 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

Typical Performance (3)

Parameter	Units	Тур	oical
Frequency	MHz	50	860
S21	dB	14.5	13.2
S11	dB	-14	-14
S22	dB	-17	-17
Output P1dB	dBm	+20	+20
Output IP3 (2)	dBm	+40	+40
Output IP2 (2)	dBm	+52	+52
CTB (4)	dBc	-71	
CSO (4)	dBc	-48	
Xmod (4)	dBc	-65	
Noise Figure	dB	3.5	3.5
Supply Voltage	V		5
Device Current	mA	1.	50

- 3. Parameters reflect performance in a single-ended 75 ohm circuit, as shown on page 3. 4. 77 channels 50 550 MHz + 34 dBmV/channel, flat-loading

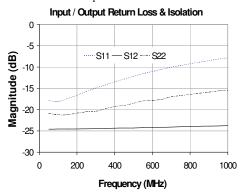
Absolute Maximum Rating

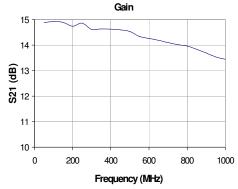
Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-55 to +150 °C
Supply Voltage	+6 V
RF Input Power (continuous)	+10 dBm
Junction Temperature	+220 °C

Operation of this device above any of these parameters may cause permanent damage.

Ordering Information

Part No.	Description
AH2*	High Dynamic Range Amplifier (lead-tin SOT-89 Pkg)
AH2-G	High Dynamic Range Amplifier (lead-free/green/RoHS-compliant SOT-89 Pkg)
AH2-PCB	Single-ended 75 ohm Application Circuit Board

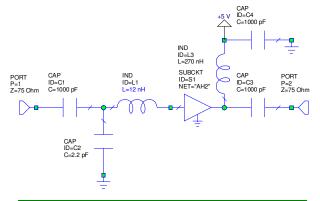

This package is being phased out in favor of the green package type which is backwards compatible for existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website.

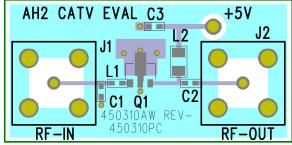


S-Parameters ($V_D = +5 \text{ V}$, $I_D = 150 \text{ mA}$, $T = 25^{\circ}\text{C}$, calibrated to device leads in a 75 ohm system)

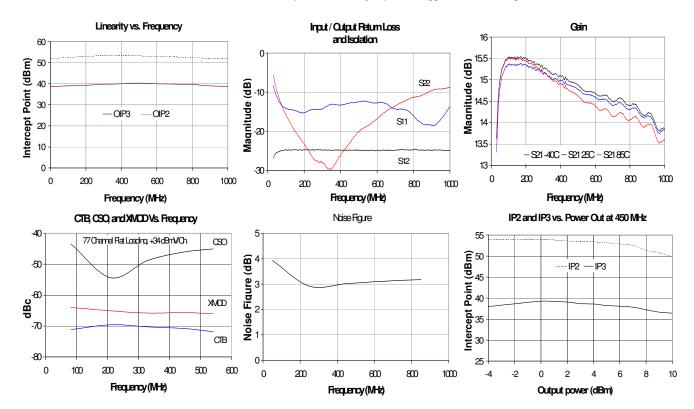
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-17.85	-34.21	14.88	172.97	-24.58	4.81	-20.87	-149.34
100	-18.10	-38.37	14.92	171.11	-24.56	2.30	-21.20	-158.61
150	-17.37	-47.65	14.89	168.59	-24.55	1.69	-21.20	-160.06
200	-16.63	-55.66	14.74	165.97	-24.53	1.17	-20.82	-159.44
250	-15.73	-62.92	14.86	162.85	-24.48	0.72	-20.50	-156.95
300	-14.91	-70.31	14.61	160.05	-24.45	0.58	-20.36	-155.78
350	-14.20	-76.37	14.64	157.30	-24.42	0.44	-19.77	-155.09
400	-13.45	-81.85	14.62	154.45	-24.34	0.16	-19.23	-152.65
450	-12.80	-86.94	14.60	151.27	-24.31	-0.28	-19.02	-152.33
500	-12.18	-91.91	14.53	148.33	-24.32	-0.47	-18.49	-151.93
550	-11.53	-95.72	14.34	146.02	-24.21	-0.94	-17.96	-149.07
600	-11.04	-99.60	14.26	143.33	-24.18	-1.00	-17.84	-148.36
650	-10.51	-103.27	14.19	140.39	-24.12	-1.10	-17.56	-149.69
700	-10.02	-106.94	14.10	137.75	-24.11	-1.54	-16.97	-149.32
750	-9.64	-110.30	14.02	134.99	-24.02	-2.04	-16.69	-148.96
800	-9.22	-113.34	13.96	132.29	-23.93	-2.63	-16.42	-148.88
850	-8.81	-116.55	13.83	129.84	-23.89	-3.12	-16.13	-149.30
900	-8.48	-119.17	13.69	127.70	-23.85	-3.33	-15.87	-149.09
950	-8.11	-121.84	13.54	125.28	-23.81	-4.08	-15.59	-149.60
1000	-7.81	-124.91	13.44	122.82	-23.77	-4.42	-15.42	-150.68

Device S-parameters are available for download off of the website at: http://www.wj.com



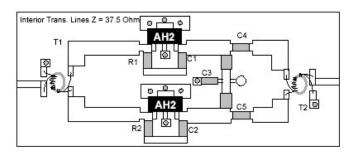

Single – Ended CATV 75 Ω Evaluation Circuit: 50 – 860 MHz (AH2-PCB)

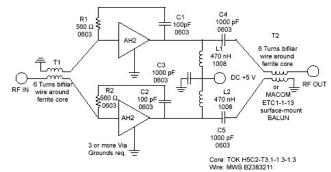
Typical RF Performance at 25°C

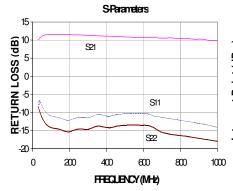

Frequency	MHz	50	450	860	
S21 – Gain	dB	14.5	14.5	13.2	
S11 – Input R.L.	dB	-11.1	-12.7	-18.3	
S22 – Output R.L.	dB	-9.5	-22.9	-10.6	
Output IP2	dBm	52.7	53.5	52.5	
Output IP3 (+5 dBm / tone, 10 MHz spacing)	dBm	39.8	40.7	40.8	
Noise Figure	dB	3.9	3.1	3.2	
Device Bias		+5V @ 150mA			
CTB	dBc	-71			
CSO	dBc	-48			
XMOD	dBc	-65			

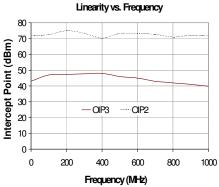
77 channels, 50-550MHz, +34dBmV/channel flat loading

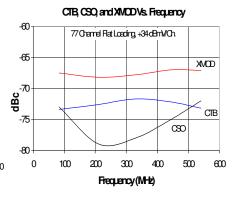
Circuit Board Material: .062" total thickness with a .028" FR-4 top RF layer, 4 layers (other layers added for rigidity), 1 oz copper, 75Ω Microstrip.






Push-Pull, 75 Ω CATV Reference Design: 50 – 860 MHz Bias Vdd = 5 V, Id = 300mA


Frequency	MHz	50	450	750	860
S21	dB	11.1	10.8	10.6	10.5
S11	dB	-10.2	-9.7	-10.8	-11
S22	dB	-13.3	-14.1	-15.4	-16.4
Output IP2	dBm	72	70	72	70
Output IP3	dBm	42	43	41	40
Noise Figure	dB	5.5	4.3	5.0	5.4
СТВ	dBc	-72			
CSO	dBc	-75			
XMOD	dBc	-68			


77 channels, 50-550MHz, +34dBmV/channel flat loading

Product Information

AH2 (SOT-89 Package) Mechanical Information

This package may contain lead-bearing materials. The plating material on the leads is SnPl

Outline Drawing

SYMBOL	MIN	MAX	
A	1.40 (.055)	1.60 (.063)	
В	.44 (.017)	.56 (.022)	
B1	.36 (.014)	.48 (.019)	
С	.35 (.014)	.44 (.017)	
D	4.40 (.173)	4.60 (.181)	
D1	1.62 (.064)	1.83 (.072)	
Е	2.29 (.090)	2.60 (.102)	
E1	2.01 (.079)	2.29 (.090)	
e	(.0	BSC 59)	
e1		BSC 18)	
н	3.94 (.155)	(.16	
L	.89 (.035)	1.20	
М	4.04 (.159)	(0)	

NOTES:

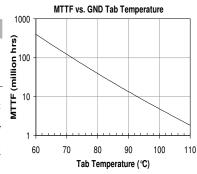
Land Patte

- DIMENSIONS CONFORM WITH JEDEC WHERE INDICATED.
- 2. DIMENSIONS ARE EXPRESSED IN
- 3. DIMENSIONING AND TOLERANCING I

1.80 (.071) PACKAGE 0 1.80 (.071) 1.27 (.000) 2.46 (.000) 2.54 (.000) 3.48 (.157)

Therma Specimation

Ope Ope ase Temperature
Cherman esistan (VRth (1)


em Sature 0 to +85°C

ORth (1) 59° C / W

129° C

therm stance is crenced from the hottest part of the ction worden tab (pin 4).

This ponds typical biasing condition of +5V mA 85°C case temperature. A million hours is achieved for you temperature the contemperature of the contemperature is achieved for the contemperature of the contemperature is achieved for the contemperature of the contemperature is achieved for the contemperature is achieved f

Process Miawing

The AH mark to with a 12" designate An alpha meric to code ("XXXX-X is also orked to the part desix on the top urface package. A probe last arked upper right-

located the web ain the "Application Notes" ion.

M ESD Rating

aution! ESD sensitive device.

Rating: Class 1B

Test: Passes ≥ 500V to <1000V Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114

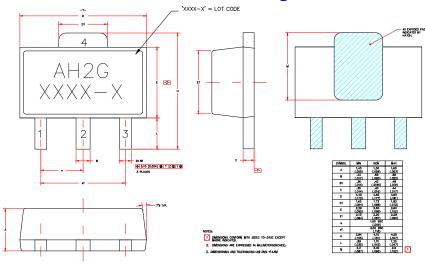
ESD Rating: Class IV

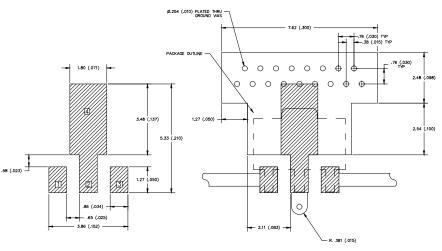
Value: Passes ≥ 1000V to <2000V
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +235° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

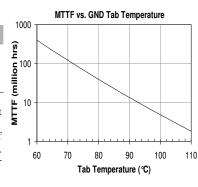
- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- ${\it 6. \ Use \ 1 \ oz. \ Copper \ minimum.}$
- All dimensions are in millimeters (inches). Angles are in degrees.


Specifications and information are subject to change without notice.


AH2-G (Green / Lead-free SOT-89 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

Outline Drawing


Land Pattern

Thermal Specifications

Parameter	Rating
Operating Case Temperature	-40 to +85°C
Thermal Resistance, Rth (1)	59° C / W
Junction Temperature, Tic (2)	129° C

- 1. The thermal resistance is referenced from the hottest part of the junction to the ground tab (pin 4).
- This corresponds to the typical biasing condition of +5V, 150 mA at an 85°C case temperature. A minimum MTTF of 1 million hours is achieved for junction temperatures below 160°C.

Product Marking

The AH2-G will be marked with an "AH2G" designator. An alphanumeric lot code ("XXXX-X") is also marked below the part designator on the top surface of the package. A "0" will be lasermarked in the upper right-hand corner.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating: Class 1B

Value: Passes ≥ 500V to <1000V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes ≥ 1000V to <2000V
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

Specifications and information are subject to change without notice.